having black fore metatarsus.

Acknowledgement: The authors are grateful to Prof. Toyohi Okada of the Tokyo Metro-politan University for checking the description and for confirming the identification of the species.

Gethmann, R.C. University of Maryland Baltimore County, Catonsville, Maryland. A case of sex chromosome meiotic drive that is age dependent.

An age dependent case of meiotic drive involving the sex chromosomes has been found. Attached-X males of the constitution $Y^SX\cdot Y^L$, $In(1)24^L + X\cdot Y^S A2^R$, y v/Dp(1;f)60g, y^{31d} produce equal numbers of \overline{XY} and Dp60 bearing sperm for the first six days after emergence, but for the

next six days (days 7-12), they produce, on the average, nearly twice as many duplication bearing sperm as $\overline{\text{XY}}$ bearing sperm. (See Table 1). The attached-XY is composed of the left end of In(1)24, which carries Y^S distally and is essentially a reinversion of In(1)EN, and

Paternal age (days)	Regular Progeny		Exceptional Progeny		Total	average no.	3/0
	<u>у</u>	y^{31d} wsp 3	o nondisj.	ð nondisj.	progeny	prog/male	ratio
1-2	652	684	. 1	0	1337	191.0	1.05
3-4	1491	1511	4*	. 4	3010	430.0	1.01
5-6	835	877	0	0, ,	1712	285.3	1.05
7-8	262	477	. 0	1	740	148.0	1.82
9-10	236	491	0	0	727	145.4	2.08
11-12	370	600	0	4	974	243.5	1.62

Table 1. Number of progeny by age of parental male.

the right end of a detached attached-X, A2, which carries $Y^L(X\cdot Y^L)$. Thus, the euchromatin is in normal sequence, except for a small distal duplication (Novitski, DIS 25:122). Dp(1;f)60g is an X-chromosome duplication carrying the tip of In(1)sc⁸ and at least one complete dose of the X heterochromatin. It is marked by y^{31d} from sc⁸. It occurred spontaneously in a triploid female and was recovered along with its reciprocal exchange product, C(1)RA60g (Mohler, DIS 34:52).

The experimental procedure was as follows: Single males less than 36 hours old were mated to 3 y wsp virgin females. Every two days, the males were transferred to new virgin females without etherization. The females were subcultured every three days for a total of 12 days. There was no change in the sex rat: o in the subcultures. A total of 9 males were tested. The number of fertile males for each successive brood was 7, 7, 6, 5, 5, and 4.

For the first six days, males produced \overline{XY} and Dp60 bearing sperm in equal numbers. The slight excess of males over females for the first six days is not significant ($X^2 = 1.46$). There is an obvious excess of male progeny starting with the seventh day. Nondisjunction in the males was low throughout the experiment. The nine exceptions included 7 nullo- \overline{XY} , Dp sperm.

There was also a drastic drop in the total number of progeny after day 6, although part of this was due to fewer fertile males in the later broods. On a per male basis, there is still a large drop in the number of progeny after day 6. Although controls were not run on these experiments, this type of a drop in total progeny was not expected, based on an examination of similar brooding experiments taken from the literature (Hiraizumi and Watanabe, Genetics 63:121; Yanders, Genetics 51:481). Considering all progeny, 63% were recovered over the first 6 days, whereas for comparable experiments, the average is around 53%. For just Dp60 progeny, 57% were recovered over the first 6 days. All of this suggests that part of the drop in total progeny is probably due to the missing \overline{XY} sperm, but that all of the drop cannot be accounted for by dysfunction of the \overline{XY} bearing sperm.

Supported by a grant from NSF (GB-38446).

^{*} Recovered as a cluster from one mating.